viernes, 8 de mayo de 2009

pie de rey



1.- Es un instrumento para medir dimensiones de objetos relativamente pequeños, Se atribuye al cosmógrafo y matemático portugués que se llama:



2.- En qué año se le atribuye el pie de rey al cosmógrafo y matemático portugués.
1492-1577





3.- También se ha llamado pie de rey al:

vernier





4.- En que año se le atribuye el pie de rey al geómetra pedro Vernier.
1588-1637



5.- ¿Qué otro nombre recibe el origen del pie de rey?
nonios y venier






pon el número y nombre correspondiente de la figura de medición
1-mordazas para medir externo
2-mordasas para medir interno
3-colizacion para medir profundidades
4-escala con diviciones de centimetros a milimetros
5-escala con diviciones de pulgadas a fracciones
6-monio para la lectura de las fracciones
7-nomio para la lectura de las fracciones

actividad





Salmonella
es un género de bacteria que pertenece a la familia Enterobacteriaceae, formado por bacilos gramnegativos, anaerobios facultativos, con flagelos perítricos y que no desarrollan cápsula ni esporas. Son bacterias móviles que producen sulfuro de hidrógeno (H2S). Fermentan glucosa por poseer una enzima especializada, pero no lactosa, y no producen ureasa.
Es un agente zoonótico de distribución universal. Se transmite por contacto directo o contaminación cruzada durante la manipulación, en el procesado de alimentos o en el hogar, también por vía sexual.
Algunas salmonellas son comunes en la piel de tortugas y de muchos reptiles, lo cual puede ser importante cuando se manipulan a la vez este tipo de mascotas y alimentos.












Brucella
es un género de bacterias Gram negativas.[1] Son cocobacilos pequeños (0,5-0,7 por 0.6-1.5 µm), no-móviles y encapsulados. Se conocen unas pocas especies de Brucella, cada una de las cuales se diferencia ligeramente en la especificidad del huésped: B. melitensis infecta cabras y ovejas, B. abortus infecta vacas, B. suis infecta cerdos, B. ovis infecta ovejas y B. neotomae. Recientemente se ha descubierto una nueva especie en mamíferos marinos: B. pinnipediae.
Brucella es la causa de la brucelosis, una verdadera enfermedad zoonótica (no se ha descrito la transmisión humano-a-humano).[1] Es transmitida por la ingestión de comida infectada, contacto directo con un animal infectado o por inhalación de aerosoles. La exposición infecciosa mínima está en 10-100 organismos. La brucelosis se produce principalmente por exposición ocupacional (por ejemplo, exposición al ganado, ovejas, cerdos), pero también por el consumo de productos lácteos no pasteurizados








pipetas automaticas
proporcionan exactitud y presicion a bajo corte en operaciones rutinarias de pipeteo ,siendo impredecibles en cualquier laboratorio quimico medico experimental,su nuevo diseño ergonomico que se ajusta perfectamente a la palma de la mano asi como su bajo peso permiten la adaptacion para utilisarla durante largos periodos sin fatiga y ademas proporcions ventajas como diseño curviado ,expulsor de puntas regulador para pequeñas cantidades de liquido deslado








moleculas inorganicas

Son sintetizadas solamente por los seres vivos y tienen una estructura a base de carbono. Están constituidas principalmente por carbono, hidrógeno y oxígeno, y con frecuencia están también presentes nitrógeno, fósforo y azufre; otros elementos son a veces incorporados pero en mucha menor proporción.
AGUA: es la mlecual inorganiza mas abundante tanto en la naturaleza como en la matteria viva.

MOLECULA DE AGUA: consta de dos atomos de hidrogeno unidos a un atomo de oxigeno mediante enlaces covalentes polares .
PUENTES DE HIDROGENO: es la atraccion electrostatica reciproca entre el nuclelo del hidreogeno , parcialmente positivo.

PREPIEDADES FICICAS Y QUIMICAS DEL AGUA: el papel biologico del agua depende de ciertas propiedades ficicas y quimicas nottables como:-- ELEBADO CALOR ESPECIFICO-- ELEVADO PUNTO DE EBULLICION -- ELEVADA CONSTANTE DIELECTRICADistribucion coorporal : el agua presenta en un adullto el 60% del peso corporal

ACIDOS
un acido es toda sustancia que contiene hidrogeno en su estructura y al estar en disolucion acuosa lo libera como iones h (+) positivos
CARACTERISTICAS
-- PUEDE SE INORGANICA U ORGANICA
-- TIENE SABOR AGRIO O ACIDO
-- VUELVE ROJO EL PAPEL TORNASOL
BASES
es toda sustancia que tiene en su estructura del grupo hidroxilo y al estar en disolusion acuosa lo libera como un ion h(-)
CARACTERISTICAS
-- PUEDE SE INIRGANICAS U ORGANICAS
-- SABOR AMARGO O ASTRINGENTES
-- VUELVE AZUL EL PAPEL TORNASOL
SALES MINERALES
SON COMPUESTOS QUE AL DISOLVERSE EN AGUA FORMAN IONEES O ELECTROLITOS EN CARGA POSITIVA (CATIONES) O CARGA NEGATIVA ( ANIONES)
--IONES: son atomos o moleculas en carga electrica y pueden ser de dos tipos:
A) CATIONES: se producen por la perdida de electrones y se dirigen hacia el catodo (-)
B) ANIONES: se produce por la ganancia de electrones y dirigen hacia el anodo(+)
ELECTROLITO
son sustancias que en agua favorecen el paso0 de la corriente electrica como concecuencia de sudisolucion (ionizacion)
son muleculas constituyentes de los seres vivos , los 4 bioelementos mas abundantes en los seres vivos son:
CARBONO
--- HIDROGENO
-- OXIGENO
-- NITROGENO

camara de neubauer















recuentro de eritrocitos

Observe que en la grilla de la cámara de Neubauer las áreas de recuento de eritrocitos y linfocitos son diferentes. Los glóbulos rojos se cuentan en las áreas coloreadas de rojo, mientras que los glóbulos blancos se cuentan en las áreas coloreadas de azul. Ten en cuenta que la grilla central tiene 25 cuadrados de 1mm x 1mm de área y 0.10 mm de profundidad. El factor de dilución es por tanto de 1:200. Convierte el número de glóbulos rojos contados en 5 cuadrados a nº glóbulos rojos/µl. (1 µl (microlitro) = 1 mm3


La imagen de abajo simula el campo que esta viendo al microscopio con un objetivo de 45x. Solo es visible el centro de la grilla. Intenta verificar esto al ir moviendo el campo de derecha-izquierda y de arriba-abajo, como si de una pletina de microscopio se tratase. Cuenta los glóbulos rojos en los cinco cuadrados mencionados anteriormente y determina el recuento de eritrocitos como se ha descrito anteriormente..
Muy importante: Cuando un eritrocito se sitúa en mitad de las líneas superior y/o de la izquierda, entonces es contabilizado. Pero no se contabiliza cuando se sitúa en mitad de las líneas inferior y/o de la derecha..





















TÉCNICAS DE CONTAJE CELULAR
Una suspensión celular se caracteriza por presentar un número de partículas microscópicas dispersas en un fluido. Habitualmente será necesario determinar tanto la densidad de las células en la suspensión como el porcentaje de éstas que son viables.
Para determinar la densidad de las células se emplean diferentes técnicas, desde la relativamente simple cámara de contaje celular de la que existen numerosas variantes, entre ellas la que empleamos (cámara de Neubauer), hasta equipos automáticos de contaje celular como el "Cell Coulter" de la empresa Beckman-Coulter.
El principio del contador celular se basa en la medida de los cambios en la resistencia eléctrica que se producen cuando una partícula no conductora en suspensión en un electrolito atraviesa un pequeño orificio. Como se puede ver en el esquema, una pequeña abertura entre los electrodos es la zona sensible a través de la que pasan las partículas que se encuentran en suspensión. Cuando una partícula atraviesa el orificio desplaza su propio volumen de electrolito. El volumen desplazado es medido como un pulso de voltaje. La altura de cada pulso es proporcional al volumen de la partícula. controlando la cantidad de la suspensión que circula a través del orificio es posible contar y medir el tamaño de las partículas. Es posible contar y medir varios miles de partículas por segundo, independientemente de su forma, color y densidad.


En la unidad de Citometría de flujo y Microscopia Confocal de los Servicios Científico-Técnicos de la Universidad de Barcelona se dispone de contadores celulares.Sin embargo, es posible determinar la densidad celular empleando métodos más sencillos. Nos basta con una cámara de contaje celular, por ej. la cámara de Neubauer, y un microscopio. Una cámara de contaje celular es un dispositivo en el que se coloca una muestra de la suspensión a medir. El dispositivo presenta unas señales que determinan un volumen conocido (x microlitros). Al contar bajo el microscopio el número de partículas presentes en ese volumen se puede determinar


Existen numerosos modelos de cámaras de contaje celular adaptadas a su uso en microscopía. En la imagen puedes observar una cámara de Neubauer doble, como las que usas en el laboratorio de prácticas.
Para determinar la viabilidad celular se emplean diferentes métodos. El más común es el de tinción con azul tripán. El azul tripán es un coloide que se introduce en el interior de las células que presentan roturas en la membrana. Así pues las células que aparecen en la imagen, claramente de color azul, son consideradas no viables. Asimilar células blancas, por exclusión, a células viables es un error pues por este método se sobrevalora la viabilidad de las células en la suspensión, determinando como inviables sólo aquellas con la membrana rota. Existen otros métodos de determinación de la viabilidad celular como el más preciso de la tinción con ioduro de propidio


1.se aseptiza el dedo con alcohol y luego se seca al aire o con algodón. Se coge entre el pulgar y el índice y se hace una punción rápida y penetrante a través de la piel de la punta del dedo con una lanceta estéril.
2. Se deshecha la primera gota de sangre y se aspira la siguiente con la pipeta de dilución perfectamente limpia y seca hasta la señal 1 o 0.5 (también puede utilizarse la pipeta de hemoglobina, de 20 microlitros). Hay que evitar la entrada de burbujas de aire, pudiendo ayudarnos de un papel de filtro para conseguir el enrasado.

3. A continuación se toma con la pipeta líquido de Hayem, isotónico con la sangre, hasta la señal 1; así, la sangre queda diluida al 1/10, si tomamos sangre hasta la señal 1, o al 1/20 si tomamos hasta 0.5. Esto es así porque el volumen de la bola de la pipeta es 100 veces superior al del capilar de la misma. (Si hemos utilizado la pipeta de hemoglobina podemos diluir su contenido en 2 o 4 ml de líquido de Hayem para obtener diluciones 1/100 o 1/200).

4. Tomamos la pipeta (o el tubo de ensayo) entre los dedos índice y pulgar y agitamos. A través de la goma de conexión con la pipeta, soplamos para despreciar las primeras gotas por corresponder al líquido que estaba en el capilar.

5. Se adapta un cubreobjetos sobre una cámara cuentaglóbulos limpia y seca y se coloca una gota en uno de los lados del cubre; esta gota penetra por capilaridad y rellena el retículo de la misma.

6. Una vez preparada la cámara se coloca sobre la platina del microscopio dejándose unos
minutos en reposo para que sedimenten los glóbulos. Disponemos el condensador bajo y luz débil; enfocamos primero con el objetivo débil seco y luego se cambia al fuerte seco para proceder al recuento, que se lleva a cabo en los cuadrados pequeños del retículo marcado en color rojo. Finalizado el recuento se procede a la limpieza de la pipeta con acético 1:3, agua destilada y alcohol-éter sucesivamente.

7.El volumen de sangre en el cual se han contado las células resulta de multiplicar la profundidad de la cámara por el factor de dilución, la superficie de los cuadrados y el número de cuadrados contados.

Con cámara de NEUBAUER: Superficie de 1 cuadrado grande (1/20 mm de lado):
Volumen de un cuadrado grande (1/10 mm de profundidad):

Si contamos "a" glóbulos rojos en "n" cuadrados pequeños, el número de glóbulos por cuadrado será a/n.
Si en un volumen 1/4000 mm3 hay a/n glóbulos rojos, en 1 mm3 habrá X. Luego:
siendo X el número de glóbulos rojos existentes por cada mm3 de sangre diluida.
Si la sangre se diluyó a 1/100 o 1/200, habrá que multiplicar el valor X por 100 o 200 respectivamente, con lo cual obtendremos un nuevo valor, Y, que representa el número de glóbulos rojos existentes por cada mm3 de sangre (sin diluir).
Se utilizan para calcular, mediante el uso del microscopio, el número de partículas (leucocitos, hematíes, bacterias…) por unidad de voluimen de un líquido.
La cámara está constituida por una placa base de vidrio especial pareciso a un porta, su parte central se encuentra separada de los extremos por unas ranuras. en ella se encuentran las cuadrículas de recuento.
La fórmula de contaje es: partículas/mm3= partículas contadas.
Clases de cámaras:
- Neubauer improved: Es el más utilizado (9 cuadros grandes, cada 1 de 1 mm2.)

practica pipeteo

practica





instrucciones
iniciamos nuestra practica con la utilizacion del equipo de cristaleria en el termino de pipetas graduadas para realizar la medicion de liquidos volumen de 1ml a 5ml en la cubeta para rotar de equipo cientifico llamado monarca




procedimiento
se hace un basiado en cifras de 20 microlitros y se usa la pipeta graduada , con la misma pipeta se toma y se depósita ,se toma con el vidrio de reloj y se comparan con todos los materiales de la mesa y todos los integrantes deven pipetear .





materiales
lamina de cristal para pruebas inmunologicas para reaccioones febriles
la pipeta pasteur la ocupamos con su ovulo de extraccion, esta se utiliza para lamina de cristal







practica de pesos y medidas

practica



materiales
pipetas graduadas
pipetas volumetricas
buretras
probetas
vaso de precipitado
matraz erlen mayer
pipeta pasteur
pipeta shali
pipeta thomas
manguera con pistilo





instrucciones
dentro del procedimientose lleva a cabo la actividad de pesar y medir los materiales de cristaleria a si mismo como sustancias , solventes y otros tipos de reactivos








procedimiento
se mediran y se pesaran cada material se se apuntaran el resultado ordenadamente despues se aplica un reactivoya sea solido , el alumno devera comprobar el peso de un mililitro de agua destilada contra el peso de una agua corriente y se ocuparan pipetas graduada





segundo parcial

practica 1

Preparar las siguientes muestras para su observación al microscopio:
1.- Muestras de tomate
2.-Muestras de cebolla
3.-Muestra de sangre
4.-Muestra de vegetal (hoja)


MATERIALES DE LABORATORIO
1.- MICROSCOPIO
2.- ESTUCHE DE DISECCIÓN
3.- PORTAOBJETOS
4.- CUBREOBJETOS
5.- PALILLOS DE MADERA
6.- ABATELENGUA
7.- ASA DE PLATINO O BACTERIOLOGICA
8.- PAPEL PARA MICROSCOPIO9.- ACEITE DE INMERSIÓN .


Una vez terminada la observación de los materiales ya indicados deberás realizar el mantenimiento y las precauciones debidas del microscopio, siguiendo los siguientes pasos.


1.-Al finalizar el trabajo, hay que dejar puesto el objetivo de menor aumento en posición de observación, asegurarse de que la parte mecánica de la platina no sobresale del borde de la misma y dejarlo cubierto con su funda.

2.-Cuando no se está utilizando el microscopio, hay que mantenerlo cubierto con su funda para evitar que se ensucien y dañen las lentes.
Si no se va a usar de forma prolongada, se debe guardar en su caja dentro de un armario para protegerlo del polvo

3.-Nunca hay que tocar las lentes con las manos. Si se ensucian, limpiarlas muy suavemente con un papel de filtro o, mejor, con un papel de óptica.

4.-No dejar el portaobjetos puesto sobre la platina si no se está utilizando el microscopio

5.-Después de utilizar el objetivo de inmersión, hay que limpiar el aceite que queda en el objetivo con pañuelos especiales para óptica o con papel de filtro (menos recomendable).
En cualquier caso se pasará el papel por la lente en un solo sentido y con suavidad.
Si el aceite ha llegado a secarse y pegarse en el objetivo, hay que limpiarlo con una mezcla de alcohol-acetona (7:3) o xilol. No hay que abusar de este tipo de limpieza, porque si se aplican estos disolventes en exceso se pueden dañar las lentes y su sujeción.

6.-No forzar nunca los tornillos giratorios del microscopio (macrométrico, micrométrico, platina, revólver y condensador)
7.-El cambio de objetivo se hace girando el revólver y dirigiendo siempre la mirada a la preparación para prevenir el roce de la lente con la muestra. No cambiar nunca de objetivo agarrándolo por el tubo del mismo ni hacerlo mientras se está observando a través del ocular.

8.-Mantener seca y limpia la platina del microscopio. Si se derrama sobre ella algún líquido, secarlo con un paño. Si se mancha de aceite, limpiarla con un paño humedecido en xilol.

9.-Es conveniente limpiar y revisar siempre los microscopios al finalizar la sesión práctica y, al acabar el curso, encargar a un técnico un ajuste y revisión general de los mismos